• Ele-Math Home
  • OaM
    • Volume 1
    • Volume 2
      • Issue 1
      • Issue 2
      • Issue 3
      • Issue 4
    • Volume 3
    • Volume 4
    • Volume 5
    • Volume 6
    • Volume 7
    • Volume 8
    • Volume 9
    • Volume 10
    • Volume 11
    • Volume 12
    • Volume 13
    • Volume 14
    • Volume 15
    • Volume 16
    • Volume 17
    • Volume 18
    • Volume 19
    • Forthcoming papers
    • Editorial board
    • Information for authors
    • Open Access Info
    • Subscription
    • Contact
  • Submit a manuscript
  • Register
  • Login
  • Open Access Info
OaM logo Open Access Journal
OaM cover

Operators and Matrices

Volume: 2

Year: 2008

If you wish to subscribe to this journal, please log in or become a member.

Articles

Issue: 1 (March, 2008)
Article number / DOI Authors / Title Pages Abstract Article
02-01 Geoffrey R. Goodson: On the multiplicity function of real normal operators 1–13 View View
02-02 Yury Arlinskiĭ: The Kalman-Yakubovich-Popov inequality for passive discrete time-invariant systems 15–51 View View
02-03 Don Hadwin, Xiujuan Ma: A note on free products 53–65 View View
02-04 Ameur Seddik: On the injective norm of ∑i=1n Ai ⊗ Bi and characterization of normaloid operators 67–77 View View
02-05 Francesco Demontis, Cornelis van der Mee: Marchenko Equations and Norming Constants of the Matrix Zakharov-Shabat System 79–113 View View
02-06 Hari Bercovici, Jiun-Chau Wang: The asymptotic behavior of free additive convolution 115–124 View View
02-07 Peter Šemrl: Characterizing Jordan automorphisms of matrix algebras through preserving properties 125–136 View View
02-08 Hwa-Long Gau, Chin-Ying Huang, Pei Yuan Wu: Numerical Radius Inequalities for Square-zero and Idempotent Operators 137–141 View View
02-09 Rajendra Bhatia, Fuad Kittaneh: Commutators, pinchings, and spectral variation 143–151 View View
Copyright information

MIA, OaM, JMI, DEA, FDC, JCA and their logos are trademarks owned by the Element d.o.o. publishing house. Content is © by Element d.o.o. – any content on this site cannot be copied, resold or otherwise used except for personal purposes.